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A new method of rapid pharmacophore fingerprinting (PharmPrint method) has been developed. A basis set
of 10 549 three-point pharmacophores has been constructed by enumerating several distance ranges and
pharmacophoric features. Software has been developed to assign pharmacophoric types to atoms in chemical
structures, generate multiple conformations, and construct the binary fingerprint according to the
pharmacophores that result. The fingerprint is used as a descriptor for developing a quantitative structure-
activity relationship (QSAR) model using partial least squares. An example is given using sets of ligands
for the estrogen receptor (ER). The result is compared with previously published results on the same data
to show the superiority of a full 3D, conformationally flexible approach. The QSAR model can be readily
interpreted in structural/chemical terms. Further examples are given using binary activity data and some of
our novel in-house compounds, which show the value of the model when crossing compound classes.

INTRODUCTION

Pharmacophore based screening has become commonplace
in the field of computer aided drug design. The pharma-
cophore concept is based on the kinds of interactions
observed in molecular recognition: hydrogen bonding,
charge-charge, and hydrophobic interactions. A pharma-
cophore is a set of functional group types in a spatial
arrangement that represents the interactions made in common
by a set of small molecule ligands with a protein receptor.
Some advantages of the methodology are as follows: (i) it
can be used where the only data available are a set of known
“hits” without a knowledge of the structure of the receptor;
(ii) the pharmacophore specification is sufficiently general
that it can be applied across different classes of ligands, i.e.,
a pharmacophore can be derived from one class and used to
predict activity in another; and (iii) the methodology can be
applied to large data sets in high throughput screening (HTS)
applications. Thus the method has wide utility.

In the usual application of the methodology a single
pharmacophore hypothesis, or a small number of them, is
derived from a set of ligands with known activity. (The term
“hypothesis” is usually used at this stage to indicate that this
is a computational result, as opposed to an empirical one
arrived at by experiment or observation of structure com-
plexes.) The hypothesis is then computationally screened
across a database of compounds to narrow the selection for
biological screening. A measure of the increase in hit rate
achieved is desirable. Several software systems are com-
mercially available that support pharmacophoric development
and use. Widely used examples are Catalyst1-3 by Molecular
Simulations Inc.4 and the ChemDiverse module of Chem-X
by Chemical Design Ltd.5 However, a major limitation is
that compounds must be registered into the proprietary,
closed database system provided by the respective vendors.

Pharmacophore fingerprinting is an extension of this
approach whereby a basis set of pharmacophores is generated

by enumerating all pharmacophoric types with a set of
distance ranges. The concept has been described previously,6-9

and applications to structure-activity relationships have been
explored with atom pair descriptors.10 In the present study a
basis set of three-point pharmacophores has been generated.
Tools have been developed to fingerprint large libraries of
compounds with the entire set and incorporated into a
program called PharmPrint. The efficiency of the code is
such that it can be applied to high-throughput electronic (“in
silico”) screening applications, in our case involving com-
binatorial libraries.

The question then arises as to how to derive a function
that relates the fingerprints to biological activity. Methods
that suggest themselves are neural networks, genetic algo-
rithms, and regression techniques. We chose one of the latter
methods, namely, partial least squares (PLS). As a natural
outcome of this methodology, we are able to address the
issues of chemical diversity and coverage of drug space (in
preparation) in addition to activity prediction.

METHODOLOGY

Fingerprint Generation. Figure 1 shows the general
definition of the three-point pharmacophore. The pharma-
cophoric groups used were the six commonly used in this
type of analysis: hydrogen bond acceptor (A) and donor (D),
groups with formal negative (N) and positive (P) charges,
and hydrophobic (H) and aromatic (R). In addition a seventh* To whom correspondence should be addressed.

Figure 1. Schematic representation of pharmacophoric types (p)
and distances (d).
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type was added for any atom that is not labeled with any of
the first six types (X). Six distance ranges were used: 2.0-
4.5, 4.5-7.0, 7.0-10.0, 10.0-14.0, 14.0-19.0, and 19.0-
24.0 Å. These have been used previously, where distributions
of hits were analyzed,7 and smaller distance bins were
assigned to the more populated regions. The three-point
pharmacophores were enumerated for all combinations of
types and distances and then subjected to two additional
constraints: (i) triangle rule, i.e., the length of each side of
a triangle cannot exceed the sum of the lengths of the other
two sides, otherwise this would produce a geometrically
impossible object; (ii) elimination of redundant pharmacoph-
ores related by symmetry. The resulting number is 10 549.

Most of the software used for this analysis was written
in-house. The exception was the Corina program for 3D
structure generation.11 This was chosen because it runs in
batch mode, accepts a variety of standard molecule formats,
and has been shown to generate good quality structures.12

The output from Corina is used as input to the PharmPrint
program which was developed in-house. Only heavy atoms
are used in computations; if hydrogens are present, they are
ignored. The function of the PharmPrint program is 3-fold.

(1) It assigns the pharmacophoric groups to atoms. This
is done using a substructure search for the relevant fragments,
using an atom-by-atom mapping algorithm.13 The fragments
are chosen using heuristics about which substructures contain
the pharmacophoric groups. For the most part this is fairly
straightforward; e.g., a carboxylate has a negative charge,
an aliphatic amine has a positive charge, a hydroxyl is a
hydrogen bond donor and acceptor, etc. The most problem-
atic assignment was that of hydrophobic. The following was
tried and appears to work well: an atom of type C, Cl, Br,
or I is considered hydrophobic if it is further than two bonds
removed in 2D connectivity from any atom of type N, O, P,
or S-H.

(2) It rotates about bonds to generate multiple conforma-
tions. This utilizes the quaternion rotation algorithm.14

Heuristics are used to determine which bonds are rotatable
and the angles they can assume. There is a limit to the
number of conformations generated (set at 1000); rotations
that affect the largest number of atoms are performed first,
so that if the limit is reached, then as much of the
conformational space is covered as possible. A simple energy
function is implemented to eliminate conformations with
severe steric overlaps. Bonds in rings are assigned to be
nonrotatable and the multiple ring conformation option in
Corina is switched on.

(3) It builds the pharmacophore fingerprint by measuring
distances between pharmacophoric groups. The output from
the program is a fingerprint for each structure in the original
SD file (SD format is the MDL ASCII molecule format),
with an identifier derived from a specified data field.

As a binary descriptor, the fingerprint is efficient to deal
with computationally. It can be represented in computer
memory using one integer for 32 bits in the bitstring. This
can be unpacked into one integer or floating point number
per bit, but for some calculations it does not need to be
unpacked. An example is the Tanimoto coefficient, a measure
of bitstring (and therefore molecular) similarity, which can
be calculated using bitwise operators in a programming
language like C.

The computational speed of fingerprinting is dependent
on the parameters set and the nature of the structures, in
particular the number of total atoms and rotatable bonds.
With the MDDR9104 set (below), and with the parameters
used, the speed was of the order of 10 structures/min on a
Silicon Graphics R10000 processor.

Preparation of the MDDR Subset.The MDDR (MDL
Drug Data Report)15 was used as a reference for drug like
compounds. It is a database of biologically active compounds
with associated data, including activity classes. Version 98.1
contains 92 604 entries. A subset was prepared using the
following criteria.

(1) Structures that have a molecular weight in the drug
like range of 200-700 are used. For this and subsequent
steps it is important that salts are removed from the original
database structure. To this end a program “stripsalt” was used
to remove small-disconnected fragments in SD files.

(2) Only structures which consist entirely of atoms from
the following list are included: C, N, O, H, S, P, F, Cl, Br,
I. This preserves only the types of structures which reflect
the chemistry carried out in our laboratories and removes
unusual structures such as metal complexes.

(3) The compound activity class, as given in the activ_class
and activ_index fields in the MDDR, indicates a well-defined
target (i.e., individual enzyme or receptor), as opposed to a
broad therapeutic class. The file activty.txt, provided by
MDL, lists the classes. This file was manually inspected to
extract all such classes.

(4) The 2D chemical similarity between any structure and
all other structures in the final list is below a certain
threshold. This eliminates close analogues that might bias
the analysis. The measure chosen was the Tanimoto coef-
ficient with the MDL 166 user keys, and the threshold was
0.8. The keys are 2D fragment-based descriptors which are
calculated automatically in MDL ISIS databases.16

(5) Classes that had less than eight members, and
compounds that belonged only to those classes, were
eliminated.

This procedure resulted in 9104 compounds and 152
classes.

Partial Least Squares.Partial least squares (PLS)17-19

was applied to derive a function that relates the fingerprints
to the activity values using code written in-house. The
algorithm used is based on the NIPALS algorithm for
principle component analysis (PCA).18 PLS has been previ-
ously applied to the analysis of chemical structure, most
notably in the CoMFA methodology.20 The data were mean
centered but not variance scaled. The data for the independent
variables were entered as 1.0 for a pharmacophore hit or
0.0 for no hit, corresponding to the binary fingerprint. The
data for the dependent variables were either the log of the
relative binding affinity (RBA) for data sets 1-3 or 1.0/0.0
to represent active or inactive in data set 4.

Data Sets.We chose data sets for the estrogen receptor
because of the recent therapeutic interest in this class of
targets and the fact that there have been several quantitative
structure-activity relationship (QSAR) models developed for
ER ligands.21-28 The crystal structure for ER-R has also
recently been reported.29 The data sets are summarized in
Table 1 and described in detail below.

Data Sets 1 and 2.The first two data sets used for the
QSAR analysis were a set of 31 ER ligands with activity
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values for binding to human ER-R (set 1) and rat ER-â (set
2).30 These are given as relative binding activity (RBA)
compared to the activity of the natural ligand, estradiol (E2),
which is given a value of 100.0. Thus the higher the value,
the more active the compound. The structures are illustrated
in Figure 2. It can be seen that they are reasonably diverse,
spanning several structural classes; some of the structures
are quite rigid while others are somewhat flexible. There
are two published crystal structures of ER-R with different
ligands bound,29 which cast light on the nature of the
protein-ligand interactions. One crystal structure contains
in the active site the natural ligand and agonist E2. The other
has the antagonist raloxifene. Raloxifene is not part of data
sets 1 and 2 but is structurally analogous to compounds 23,
24, 25, and 26 (Figure 2). Raloxifene makes additional
interactions compared to E2, involving a positively charged
group on a flexible side chain on the ligand. This is
accommodated by a conformational shift in the protein that
is the structural basis for antagonism in the ER. This indicates
that this training set contains ligands with at least two
different binding modes.

Three different QSAR methods have been previously
applied to these data sets28 that we use for comparison of
results. The methods apply PLS to different molecular
descriptors: (1) comparative molecular field analysis (CoM-
FA), a widely used method based on the calculation of a
steric and electrostatic field on a grid around each ligand;
(2) The CoDESSA program, which calculates descriptors for
2D and 3D structures and quantum-mechanical properties;
and (3) hologram QSAR (HQSAR), which uses as a
descriptor a molecular hologram constructed from counts of
substructural molecular fragments (2D only).

The results for these data sets are presented asr2 andq2,
comparing the predicted and actual activity values. Theq2

calculation (cross-validatedr2) uses the leave-one-out (LOO)
procedure.

Data Set 3.This makes use of 35 heterocyclic compounds
that have shown activity in our ER-R assay. The activity
values have been expressed as RBA to make them equivalent
to set 1; 17 of these were added to set 1 to give a training
set of 48. The remaining 18 compounds were used for testing
using the model derived from the training set, and the result
is given for these compounds only.

Data Set 4.This set was designed so that the method could
be tested using binary activity values. The PLS algorithm
was run with activity values of either 1.0 or 0.0. Separate
training and testing sets, each with actives and inactives, were
established as follows. The training set actives were the 15
compounds from set 1 which have a RBA ofg10.0 (numbers
2-8, 20-22, 24-27, and 29 in Figure 2). The testing set
actives were the compounds in the complete MDDR which

have the string “ESTROGEN” in the activity_class field. This
set was pruned to eliminate obvious prodrugs and to exclude
compounds in the training set, the resulting number being
250. The MDDR9104 subset was pruned to exclude com-
pounds that had the string “ESTROGEN” in the activity-
_class field. This gave a set of 9040 from which 750
compounds were randomly chosen and included in the
training set with activity values of 0.0, i.e., assumed inactive.
The remaining 8290 were used for testing. To distinguish
these compounds from ones which can be properly claimed
to be inactive (as actually tested in the biological assay), we
term these the “background” sets as opposed to “inactives”.
At the training stage the active compounds were duplicated
50 times to give as much overall weight to the active as the
background compounds. An additional testing set was
established of 86 compounds from our corporate database
which have an activity for ER-R of better then 1µM (the
“ARI actives”). These were derived from combinatorial
libraries, with scaffolds of three different chemical classes,
none of which are represented in the training set, and which
include most of the heterocyclics in data set 3.

RESULTS AND DISCUSSION

Table 2 presents the results for the PharmPrint/PLS QSAR
on data sets 1-3 as described in Methodology. For com-
parison, the same statistics are reproduced for the three other
QSAR methods previously applied28 to data sets 1 and 2:
comparative molecular field analysis (CoMFA), classical
QSAR using the CoDESSA program, and hologram QSAR
(HQSAR). It can be seen that for both data sets ther2 (non-
cross-validated result) for the PharmPrint/PLS is comparable
to the other three methods. With the cross-validated statistic,
q2, this value is higher for the Pharmprint/PLS than for any
of the other methods. With set 3, theq2 is higher still, at
0.88. This suggests that the phamacophore fingerprints are
more successfully generalizing from the data. This may not
be surprising since the methodology uses not only 3D
features but conformational flexibility as well.

As a point of interest, our method initially used only the
six pharmacophoric types A, D, H, N, P, R; unlabeled atoms

Table 1

set training testing

1 31 literature compounds30

(RBA for human ER-R: 0.001-468)
leave-one-out cross-validation on training set

2 31 literature compounds30

(RBA for rat ER-â: 0.001-404)
leave-one-out cross-validation on training set

3 set 1+ 17 proprietary heterocycles
(RBA for human ER-R: 0.002-5.5)

18 heterocycles (distinct from training set)
(RBA for human ER-R: 0.017-9.4)

4 15 from set 1 (RBAg10.0)+ 750
MDDR “not estrogen”

86 proprietary compounds (<1 µM for ER-R) + 250 MDDR
“estrogen” compounds+ 8290 MDDR “not estrogen”
compounds

Table 2

dataset statistic CoMFA HQSAR CODESSA PharmPrint

1 q2 0.70 0.67 0.46 0.75
r2 0.95 0.88 0.79 0.92
PCs 4 4 2 4

2 q2 0.60 0.68 0.61 0.71
r2 0.95 0.91 0.92 0.93
PCs 4 5 4 5

3 q2 N/A N/A N/A 0.88
PCs N/A N/A N/A 6
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were ignored, giving a bitstring of length 6726. With this
fingerprint it was very difficult to approach the accuracy
given in Table 2, theq2 statistic remaining around 0.60 or
below (data not shown). Therefore it is clear that the
previously unlabeled atoms, now given a default label X and
included in the fingerprint of length 10 549, contain important

information, probably related to molecular volume. The X
type accounts for 49.7% of all atoms in molecules of the
MDDR9104 set.

In QSAR studies of this type it is considered important to
be able to deal with different kinds of activity data. One
situation that is common, especially with the results of an

Figure 2. The 31 structures in data sets 1 and 2.
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initial screening of primary libraries, is that data are available
as to which compounds are active or inactive, but reliable
IC50 or EC50 data have not been established. Thus training
set 4 was established consisting of the 15 compounds from
set 1 which have RBA values ofg10.0. These were used
with activity values of 1.0, ignoring the actual affinity values.
It was considered desirable to include as many inactive
compounds as possible, as the determinants of activity are
not just the pharmacophores that occur more frequently in
the active compounds but also ones which occur less
frequently compared to a background hit rate. These phar-
macophores may have a negative impact on activity when
they are present. Since the PharmPrint method is very
efficient, it is possible at the training stage to include many
or all of the compounds in the MDDR set, the great majority
of which can be assumed to be inactive for a particular target,
which we term the background compounds.

The results are presented graphically in Figure 3 and
statistically in Table 3. The 8290 MDDR “background”
compounds in the testing set are clustered close to zero. The
250 MDDR “estrogen” testing compounds and 86 ARI
estrogen compounds are distributed between 0.0 and 1.0. In
Figure 3, it is clear that both have a distribution that is clearly
distinct from the background compounds. The ARI com-
pounds have a distribution that is somewhat to the left of
the MDDR estrogen compounds. This can be interpreted by
considering that the MDDR estrogen compounds are gener-
ally of the same class as the training set. The ARI
compounds, however, are derived from our combinatorial
libraries and are of three distinct classes, none of which are
represented in the training set. This gives some measure of
the predictive ability across different classes of molecules.
Table 3 gives the percentage of correctly classified com-
pounds, assuming the MDDR background set is inactive and
the MDDR estrogen and ARI compounds are active, and
taking an arbitrary discrimination cutoff of 0.2. The results
are 89.7, 87.4, and 87.2%, respectively.

Given good results, it is also desirable to be able to
interpret them in terms of structural features. With some
computational methods this may be difficult. However, with
the fingerprints, we can look at the weights produced by the

PLS analysis. Table 4 presents the 10 highest and 10 lowest
pharmacophores rank ordered by the magnitude of the
weights for the first principle component from data set 4.
Positive weights indicate pharmacophores that are common
in the active compounds relative to the background com-
pounds, and negative weights indicate the reverse. For
example, the pharmacophore ranked highest, number 1624,
can be seen to be a strong feature of the active compounds
in the training set. It consists of an aromatic group (R) 2.0-
4.5 Å from a hydrogen bond donor (D); this maps to the
phenol group that is common to the most active compounds.
There is a hydrogen bond acceptor atom (A) 7-10 Å from
the ring centroid (R) and 10-14 Å from the (D) atom. This
maps to another hydroxyl or carbonyl group further away.
Figure 4 shows how pharmacophore 1624 maps to the
molecular structures of estradiol, the natural ligand, and
diethylstilbestrol, the most active compound in set 1. This
illustrates that when one pharmacophore hits two molecules,
it is because of a similar presentation of functionality, even
though the compounds may be of different structural classes.
Most of the rest of the top scoring pharmacophores are
similar to the first, having the same distance ranges and
varying only in some of the types. The pharmacophores with

Figure 3. Distribution of binary activity prediction values for
testing set 4.

Table 3

mean sd % correct

MDDR background 8290 0.03 0.14 89.7
MDDR estrogen 250 0.53 0.26 87.4
ARI actives 86 0.37 0.15 87.2

Figure 4. Illustration to show a mapping of pharmacophore 1624
from Table 4 onto (i) estradiol (top), the natural ligand, and (ii)
diethylstilbestrol (bottom), the most potent compound in data set
1. The hydroxyl groups are both hydrogen bond donors and
acceptors (D, A), and the centroid of the aromatic ring is shown.

Table 4

distances types

rank pharm no. weight 1 2 3 1 2 3

1 1624 0.0832 2-4.5 7-10 10-14 A D R
2 1673 0.0805 2-4.5 7-10 10-14 D D R
3 1670 0.0778 2-4.5 7-10 10-14 D D H
4 1667 0.0770 2-4.5 7-10 10-14 D D X
5 1663 0.0755 2-4.5 7-10 10-14 D A H
6 840 0.0724 2-4.5 4.5-7 7-10 H D R
7 3889 0.0724 4.5-7 4.5-7 10-14 D D H
8 1666 0.0719 2-4.5 7-10 10-14 D A R
9 1618 0.0680 2-4.5 7-10 10-14 A D X

10 1660 0.0680 2-4.5 7-10 10-14 D A X

10 540 3523 -0.0638 4.5-7 4.5-7 4.5-7 X A D
10 541 728 -0.0649 2-4.5 4.5-7 7-10 A X R
10 542 365 -0.0657 2-4.5 2-4.5 7-10 A R X
10 543 696 -0.0662 2-4.5 4.5-7 7-10 X H D
10 544 484 -0.0672 2-4.5 4.5-7 4.5-7 X A A
10 545 3522 -0.0672 4.5-7 4.5-7 4.5-7 X A A
10 546 1443 -0.0674 2-4.5 7-10 7-10 H X X
10 547 681 -0.0716 2-4.5 4.5-7 7-10 X A A
10 548 288 -0.0719 2-4.5 2-4.5 7-10 X A X
10 549 485 -0.0754 2-4.5 4.5-7 4.5-7 X A D
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the negative weights are more difficult to interpret in terms
of the structures of the active compounds but appear to
contribute roughly equally in magnitude to the model.

CONCLUSIONS

Pharmacophore fingerprinting is a promising approach to
computer aided drug design. The PharmPrint fingerprint is
a compact but information-rich descriptor. It is based on
features observed to be important in ligand-receptor interac-
tions, and it takes into account not only 3D structure but
multiple conformations. We note the value of the X atom
type that might help describe additional skeletal, support
feature, and/or overall molecular volume.

The QSAR performs well with structures where there is
some conformational flexibility and where there are multiple
structural classes and binding modes. The QSAR does not
require the structure of the receptor, and no assumptions are
required about how molecules overlap at the binding site.
However, one can envision a pharmacophore description
being derived from the binding site of a known receptor
structure and a function used to compare that to the molecule
fingerprint. This is an area of current investigation for us.

The PharmPrint software runs in batch mode, requiring
only a single 3D structure as input, and the output is a flat
file. It does not require the construction of specialized
databases. Thus it integrates well with our chemical informa-
tion systems and can be triggered automatically as structures
or libraries are added. Performance is such that tens of
thousands of compounds can be processed each day. It is
thus well-suited to our main application of building block
selection for the design of focused or targeted combinatorial
libraries using in silico screening. We are currently exploring
ways to increase the efficiency of the calculation; these
include parallelization strategies and ways to take advantage
of the redundancy in enumerated combinatorial libraries
where the same building block appears many times on the
same scaffold. We will also be reporting on the use of this
descriptor for what we consider the complementary problem
to targeted designsprimary library designswhich brings up
the questions of molecular diversity and coverage of drug
space.
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